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Abstract

In the age of digital education, it is crucial to
improve the quality and accessibility of learn-
ing tools. This project introduces STEM-GPT,
an Al assistant designed to answer multiple-
choice questions on STEM subjects. Our aim
is to enhance the learning experience of EPFL
students by providing accurate and detailed ex-
planations to their questions. To achieve that,
we started from the base model GPT-Neo 125M
and experimented improving it with various
methods, such as Direct Preference Optimiza-
tion and Supervised Fine-Tuning. Our final
model achieves an overall accuracy of 39%,
with a particularly strong performance in spe-
cific categories like biology where it achieves
72%.

1 Introduction

In the rapidly evolving landscape of digital edu-
cation, leveraging advanced language models to
enhance educational experiences presents a signifi-
cant opportunity. With the increasing capabilities
of Al, these tools can be used not only to provide
correct answers but also to explain the reasoning
behind them, enriching the learning process for
students (Cacicio et al., 2023).

However, the highest-performing language mod-
els such as GPT-4 are not open source. This
presents challenges in terms of data privacy, as
professors and educational institutions may be re-
luctant to share their data with private companies
(Sanderson, 2023). Additionally, these models are
often computationally expensive, making them less
accessible for individual use.

Our goal for this project is to create an open-
source Al assistant that is efficient enough to run
on personal devices, thus ensuring accessibility and
privacy. Our final system, STEM-GPT, offers an
interesting balance between size and capability.

To achieve this, we start with the model GPT-
Neo 125M which provides a good trade-off be-

tween performance and computational require-
ments. We then enhance the model’s capabili-
ties through Direct Preference Optimization (DPO)
and Supervised Fine-Tuning (SFT): DPO helps
align the model outputs with human preferences,
while SFT focuses on improving the accuracy on
multiple-choice question answering.

This report details our methodology, the ratio-
nale behind our choices, the implications of our
findings, and the ethical considerations associated
with our work.

2 Related Work

This section covers previous work that has laid
the foundation for our project. Our work builds
upon advancements in large language models, di-
rect preference optimization techniques, and evalu-
ation methods for the task of multiple-choice ques-
tion answering.

2.1 Large Language Models and GPT-Neo

In recent years, the development of large language
models (LLMs) has significantly advanced natural
language processing (NLP). One notable contribu-
tion is GPT-Neo (Black et al., 2021), a series of
LLMs developed by Eleuther Al and trained on
the extensive Pile dataset (Gao et al., 2020). The
125M parameter model, though the smallest in the
series, excels in generating coherent and contex-
tually relevant text by leveraging local attention
mechanisms. Designed to replicate GPT-3-like ca-
pabilities, this model performs well in various NLP
tasks and supports few-shot learning. Further evalu-
ations (Kashyap et al., 2022) highlight its strengths
and potential for fine-tuning in specific applica-
tions, making it an ideal candidate for our project.

2.2 Direct Preference Optimization

Direct Preference Optimization (DPO) is a tech-
nique designed to align language models with hu-
man preferences (Rafailov et al., 2023). Unlike tra-



ditional reinforcement learning from human feed-
back (RLHF), which involves complex and often
unstable procedures, DPO uses a simpler approach
by presenting preference pairs to guide the model
toward desired behaviors. This technique is par-
ticularly relevant to our project, as it allows us to
fine-tune the base model to produce more accurate
and helpful responses for educational purposes.

2.3 Evaluation methods for MCQA

Evaluating the performance of language models
on the task of multiple-choice question answering
(MCQA) is crucial for assessing their effectiveness
as educational tools. Several open-source datasets
provide benchmarks for this evaluation. In this
project, we used the Massive Multitask Language
Understanding (MMLU) and AI2 Reasoning Chal-
lenge (ARC) datasets since they contain STEM-
related questions.

The MMLU dataset (Hendrycks et al., 2020) of-
fers a diverse collection of questions across various
domains and difficulty levels, serving as a robust
benchmark for measuring general knowledge and
reasoning abilities of language models. Similarly,
the AI2 Reasoning Challenge (ARC) dataset (Clark
et al., 2018) focuses on science questions from el-
ementary to high school levels, offering a diverse
test bed for evaluating model performance on stan-
dardized academic content.

3 Approach

This section details our approach to develop an
Al assistant capable of answering multiple-choice
questions. Our methodology involves a sequence
of steps starting from the base model, to applying
DPO, to finally refining the model through either
an extraction pipeline or fine-tuning to achieve the
final system. The whole process is summarized in
Figure 1.

3.1 Base model

The starting point is our base model: GPT-Neo
125M from EleutherAl, an autoregressive language
model based on the transformer architecture. It
consists of multiple layers of self-attention and
feed-forward neural networks, designed to generate
coherent and contextually relevant text. Its exact
architecture is detailed in Table 1.

To adapt GPT-Neo for our specific application,
we added a padding token to handle variable-length
inputs efficiently.
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Figure 1: Base model to final models pipeline. In each
example, "P" denotes the prompt and "O" the output.

Attribute Value
Number of parameters 125 million
Hidden size 768

Number of layers 12
Number of attention heads | 12
Vocabulary size 50257

Table 1: Base model architecture

3.2 Direct Preference Optimization

Since our task is answering STEM questions, we
want our model to be helpful, correct in its answers,
and overall aligned with the human judgement of
what makes an answer ’good’.

That is why the next step of our process is align-
ing the base model’s outputs with human prefer-
ences using DPO.

3.2.1 Preference data collection

As mentioned in subsection 2.2, we need a dataset
of preference pairs to perform DPO.

During the first milestone of the project, each
student received 100 prompts consisting of STEM



questions obtained from EPFL courses (with the
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where A denotes the difference in log-probabilities
between chosen and rejected outputs:

3.4 Final system

3.3 Adapting to MCQA

At this stage, our model is capable of generating
detailed answers to STEM-related questions. How- 4 Experiments
ever, for multiple-choice questions (MCQ), we 4.1 Data

need to extract the specific letter corresponding
to the choice made by the model. We explored two
different methods to achieve this.

In this subsection we describe the datasets used:
from raw data, to preprocessing, to finally splitting

for training and evaluation.

3.3.1 Detailed answer extraction

The first method, summarized in Figure 2, involves 411 Preference data

extracting a single letter answer from a detailed
output. The steps are as follows:

The preference data was collected as explained
in subsubsection 3.2.1. Each row in this dataset
contains a preference pair with "prompt" being the
question, "chosen" the better answer, and "rejected"

the less good answer.
2. Append the phrase “Therefore, the correct an- Preprocessing this data consisted of:

swer is ” to the generated answer

1. Input the MCQ prompt and generate a detailed
answer with our model

* removing rows where "chosen" and "rejected"

3. Identify the next token with the highest proba-
were the same.

bility among the letters A, B, C, and D

. * removing rows where the prompt length or
4. Set this single letter as the final answer £ promp £

output length was above the 95th percentile.



* adding the system prompt: "You are a helpful
assistant for a STEM student"

After preprocessing, the final DPO dataset con-
tains 23,933 preference pairs, split into 21,539 pairs
for training (90%) and 2,394 pairs for evaluation
(10%).

4.1.2 MCQA data

For this project, we were provided with a MCQA
dataset with 356 questions from machine learning,
college biology, and college chemistry.

Additionally, we used open-source MCQA
datasets as mentioned in subsection 2.3:

* MMLU dataset: we used only STEM-related
categories, totaling 3,429 questions.

* ARC dataset: we discarded the 'Easy’ cate-
gory and used only the Challenge’ category,
as our final model is intended for university-
level questions, resulting in 2,590 questions.

We had to preprocess this data to format all rows
consistently with fields: "subject", "question" (for-
matted as *Question: [our question] Options: A.
[opt A] B. [opt B] C. [opt C] D. [opt D] Answer:’),
and "answer" (the single-letter correct answer).

In total, this gives us a final MCQA dataset of
6,375 questions split into 5,737 for training (90%)

and 638 for evaluation (10%).

4.2 Evaluation

To assess the performance of our model, we focus
on two main evaluation metrics: policy reward
accuracy and MCQA accuracy.

4.2.1 Policy reward accuracy

To evaluate the impact of DPO, we assess the
model’s ability to distinguish between the ’cho-
sen’ and 'rejected’ answers by looking at the scores
assigned to each: a performant model should assign
higher scores to the chosen answer.

The metric used here is accuracy, defined as the
proportion of times the model correctly identifies
the chosen’ answer as better compared to the ’re-
jected’ answer.

4.2.2 MCQA Accuracy

To assess the model’s performance on MCQA, we
evaluate the accuracy of the single-letter answers
generated by the model, i.e. the proportion of
questions for which the model’s predicted answer
matches the correct answer.

4.3 Baselines

For our experiments, we compare the performance
of our model to two baselines: the base model
GPT-Neo-125M, and the model GPT-2-124M by
OpenAl (Radford et al., 2019) whose architecture
is very similar. These comparisons help quantify
the improvements achieved through our methods.

It is also important to note that random choice
would yield around 50% policy reward accuracy
(distinguishing between ’chosen’ and ’rejected’)
and 25% accuracy in MCQA (choosing between A,
B, C, and D).

4.4 Experimental details

The hyperparameters used in our experiments are
shown in Table 2.

* The regularization 3 for DPO was chosen
based on the value reported in the original
paper (Rafailov et al., 2023)

* The learning rates were explored within a
range seen in literature (Kashyap et al., 2022),
and the best learning rates for both DPO and
SFT were determined through experimenta-
tion

* The number of epochs was set to 3, as no
significant progress was observed beyond this
point (performance plateauing)

* We used AdamW the default optimizer from
the transformers library, as it improves gener-
alization and training stability by decoupling
weight decay from gradient updates

Hyperparameter Value(s)
Optimizer AdamW
Learning rate {5-107}7_,
Best learning rate (DPO) 5-1077
Best learning rate (SFT) 5-107°
Number of epochs [2, 5]

Best number of epochs 3
DPO regularization (/3) 0.1

Table 2: Hyperparameter values used in the training
setups

The runtimes for the various steps of our project
are detailed in Table 3. All tasks were executed on
a single GPU with 64GB RAM.



Task Runtime
DPO training 2 hours
DPO evaluation 5 minutes
MCQA evaluation (by answer extraction) | 45 minutes
MCQA finetuning 5 minutes
MCQA evaluation (on finetuned model) 10 seconds

Table 3: Runtimes for different steps of the project

4.5 Results

4.5.1 Policy reward accuracy

The results in Table 4 show that applying DPO sig-
nificantly improves the model’s ability to identify
the better answer, with the DPO-ed model achiev-
ing a reward accuracy of 56% compared to the
baselines 24%.

Model Reward Accuracy
Baselines GPT-2 24.0%
GPT-Neo 24.2%
With DPO | GPT-Neo + DPO 56.1%

Table 4: Policy reward accuracy before vs after DPO

4.5.2 MCQA accuracy

The results in Table 5 show the different model ac-
curacies on MCQA using the two adaptation meth-
ods. The comparison includes an ablation study to
evaluate the impact of DPO on MCQA accuracy.

Model MCQA Accuracy
With GPT-2 23.5%
Extraction GPT-Neo 22.7%
GPT-Neo + DPO 24.1%
With GPT-2 + SFT 26.1%
MCQA SFT GPT-Neo + SFT 39.3%
GPT-Neo + DPO + SFT 33.1%

Table 5: Comparison of MCQA accuracy for various
MCQA adaptation methods

Among the models using the extraction method,
we see that DPO yields a marginal improvement
compared to the base model. However, all accu-
racies are close to the random choice baseline of
25%. One possible explanation is that when the
model generates a detailed answer, it produces a lot
of additional information that is not directly related
to the single-letter answer choice: this verbosity
can introduce noise and distract the model when
selecting the correct letter in the end.

On the contrary, the SFT method shows signif-
icant improvement in MCQA accuracy for GPT-
Neo, with GPT-Neo + SFT achieving 39%. In this
case however, the combination of DPO and SFT
results in a lower accuracy of 33%.

Given these results, our final system STEM-GPT
will be based on the GPT-Neo model fine-tuned
with the SFT method, as it provides the best perfor-
mance in MCQA evaluation.

5 Analysis

This section includes further analysis on the com-
parative performance of different models, the im-
pact of DPO, and a detailed evaluation of our final
system’s performance across different subjects.

5.1 Comparison of GPT-Neo and GPT-2
Performance

An interesting result seen in Table 5 is that al-
though the baseline models GPT-Neo-125M and
GPT-2-124M have very similar architectures and
were SFT-ed on the same data in our experiments,
GPT-2 + SFT achieves an accuracy close to the
random choice baseline (26%) while GPT-Neo +
SFT achieves the best accuracy overall (39%).

One possible explanation behind this drastic dif-
ference is that GPT-Neo was trained on the Pile
dataset (Gao et al., 2020) which has significantly
more data (825 GB) than WebText (Radford et al.,
2019), the dataset on which GPT-2 was trained (40
GB).

5.2 Ablation study

The ablation study investigates the impact of DPO
on the final model’s performance on MCQA.

When using the extraction method, DPO slightly
improved the base model’s performance, with the
DPO-ed model achieving 24% accuracy compared
to 23% for the base model. This indicates that
the DPO-ed model’s detailed answers were more
‘useful’, resulting in marginally higher accuracy in
MCQA.

However, for the SFT method, the fine-tuned
base model achieved better performance (39%)
than the fine-tuned DPO-ed model (33%). This
might imply that fine-tuning on single-letter an-
swering did not leverage the step-by-step reasoning
learned during DPO effectively.

5.3 STEM-GPT detailed evaluation

To further understand the performance of our final
system, we evaluated its MCQA accuracy on sub-
sets of our data, categorized by subject. The results
are illustrated in Figure 3.

We see that the model performs best on sub-
jects like biology and chemistry, while performing
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Figure 3: Detailed evaluation of our best final system:
MCQA accuracy by question category

worst on subjects like computer science, math, and
physics.

One possible explanation is that subjects like
biology and chemistry often involve descriptive
and explanatory content, which aligns well with a
LLM’s strength in processing and generating natu-
ral language.

On the contrary, fields like computer science,
mathematics, and physics frequently involve sym-
bolic manipulation, formal proofs, and problem-
solving techniques that may not be as effectively
handled by a LLM trained primarily on natural lan-
guage. The complexity and abstract nature of these
subjects might pose additional challenges.

6 Ethical considerations

This section explores the broader ethical implica-
tions of our work, including the potential for other
languages adaptation, benefits/harms balance, and
the potential impact on vulnerable or marginalized
groups.

6.1 Adaptation to other languages

Adapting our model to other languages is crucial
to ensure global accessibility, inclusivity, and edu-
cational equity.

For high-resource languages like French and Ger-

man, this could be achieved by fine-tuning on large,
high-quality datasets available for these languages
(like Wikipedia Dumps or ArXiv).

For low-resource languages such as Urdu and
Swahili, a different approach would be needed.
We could use techniques such as transfer learning,
where the model is first trained on a high-resource
language and then fine-tuned on the low-resource
language data.

6.2 Interaction with signed language users

Adapting the model to interact with users in signed
languages (SL) is a more complex task, as it in-
volves multimodal capabilities.

One approach could be to develop a multimodal
Al assistant that integrates NLP with computer vi-
sion. This assistant could interpret SL through
video input, translate it into text, and respond ap-
propriately.

It would be crucial to collaborate with experts
and incorporate datasets specifically for SL.

6.3 Potential benefits and harms

If our model works as intended, it could signifi-
cantly benefit students and educators by provid-
ing accurate and detailed explanations for STEM-
related questions. This could help democratize
the access to educational resources by making ad-
vanced learning tools available to a broader audi-
ence.

However, there are potential harms to consider.
Our model could increase misinformation by gen-
erating incorrect or misleading information, which
is especially concerning in an educational context.

Since the base model was primarily trained on
English data, there could also be disparities in per-
formance when adapted to other languages: this
could lead to less effective learning tools for non-
English speakers.

To mitigate these risks, robust evaluation and
monitoring mechanisms should be implemented
to ensure the accuracy and fairness of the model
outputs. We should also be transparent about the
model limitations and set guidelines for a responsi-
ble use.

6.4 Potential impact on vulnerable or
marginalized groups

Not only could our model have lower performance

in other languages, but it could also be more prone

to harmful behavior in these languages. This in-

cludes the propagation of biases present in the train-



ing data, which may disproportionately affect vul-
nerable or marginalized groups. Such biases could
lead to unfair or even discriminatory outputs.

To minimize these risks, it would be essential to
carefully curate and balance the training datasets,
and evaluate our model adversarially across differ-
ent groups and languages.

7 Conclusion

In this project, we created STEM-GPT: an Al assis-
tant for answering STEM-related multiple-choice
questions, based on the model GPT-Neo 125M.

We explored the effectiveness of different meth-
ods to enhance its performance, and found that
SFT alone yielded the best accuracy, outperform-
ing other method combinations.

Detailed evaluation showed that STEM-GPT per-
forms well in more descriptive subjects like biology
and chemistry but struggles with more abstract sub-
jects like computer science, math, and physics.

A future improvement could be to develop a
multi-modal Al assistant that can interpret text
and visual information such as graphs and figures,
which are crucial in STEM education.

Future work could also focus on crafting a more
advanced and diverse STEM dataset, adding data
in multiple languages, and possibly using Al to
generate data.
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A Appendix

A.1 Al Usage

I wanted to use ChatGPT to help me with debug-
ging code related to the trl library (since each func-
tion has a million optional arguments) but it kept
hallucinating arguments even when provided with
the source code of a class (ex: DPOTrainer), so in
the end I just spent hours reading the documenta-
tion myself.

This was pretty fastidious and I was definitely
disappointed at first that the Al shortcut didn’t work
as expected, but I definitely learned a lot in the end.

On the contrary, ChatGPT was super helpful
with LaTeX formatting, notably to convert screen-
shots of dataframes to clean LaTeX tables (which
could have been done manually but I was curious
to see the accuracy).
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