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Abstract—While predicting Space Weather forecasting and
protecting spacecraft against radiation are increasingly cru-
cial for planetary exploration, only a few spacecraft are
equipped with dedicated tools for these tasks. However, every
spacecraft, whether planetary or astronomical, is fitted with
numerous housekeeping sensors. Some of these sensors can
be useful in identifying radiation hazards caused by solar
particle events. Specifically, certain sensors like the Error
Detection and Correction (EDAC) memory counters can pin-
point energetic particles affecting detectors and subsystems.
These counters often exhibit a sudden spike in error counts
corresponding to the arrival of energetic particles [1] [2].
Furthermore, during the impact of a Coronal Mass Ejection
(CME), the sensors can detect a forbush decrease associated
with a reduction in the slope or plateau of the EDAC counter.
Other sensors such as the magneto can also detect some
changes with the spacial weather since a sudden change of
the value of the magnetic field usually correspond to a CME
event.

Our study involves analyzing the engineering data set from
the European Space Agency (ESA) Solar System missions of
the Venus Express spacecraft. We perform a feasibility study
on detecting CME events using EDAC counters and magneto
sensors.

The study’s results illustrate how engineering sensors can
provide insights into the solar particle environment at a
spacecraft location.

I. INTRODUCTION

The data used in this project comes from the ESA
database of the Venus Express mission.We have the dataset
containing the EDAC counter daily & every 12 minutes,
the magneto data sensors including the intensity of the
magnetic field in the three direction x, y & z with its
distance from the surface of Venus and another dataset
containing the CME start & end time.

It was our job to use this data to build a model able
to predict a CME event happening in live. In practice, we
were able to predict a CME event with an accuracy of
99.8% and a F1 score of 95.5%.

II. DATA FETCHING AND PRE-PROCESSING

∗ Fetching the data:
The first steps of our job required fetching data from
the VEX mission:

– EDAC counters
– Magnetometer measurements
– CME start and end times

We acquired the data from the ESA database [3]
and various other sources (public & private) from

ESA missions. This task involved developing web
scrapping algorithms as the data was stored in
separate files for each day and aggregated over each
month, creating a nested web link structure.

∗ Sanitizing the data:
CME related data was obtained from difference
sources and in different formats. To have data
consistency, we converted the data such as date-time
features into usable formats.

∗ Remove counters restarts:
During the VEX mission, EDAC counters onboard
the space craft were occasionally reset to zero. Hence
as we can see in Figure 1, we corrected the counter
by removing these resets as they made by human
intervention, and thus irrelevant to our data.

Fig. 1: Raw and Corrected EDAC counter of the VEX
mission

III. FIRST LOOK AT THE DATA

Once we had usable data, we performed some basic
analysis before training any models, to assess potential
challenges that we might face. Here are the notable results
that we had :

A. Class imbalance

CME events are very rare so they are under-represented
in our dataset: only 1.78% of our data corresponds to
CMEs. This class imbalance can lead to models that are
biased toward the majority class (always predicting that
there is no CME event) and might not perform well
in accurately predicting the minority class (high false
negative rate resulting in a low F1 score).

When training our models, we will have to implement
additional techniques to mitigate this imbalance (we will



give more detail on this later, when we explain the training
phase).

B. Low feature correlation

Before even training a model that predicts CMEs by
looking at EDAC, we looked at the correlation between
these two.

We first looked at it just graphically: in Figure 2, we
see that although some CMEs do seem to correspond
with a jump in EDAC, some other CMEs happen with
no EDAC change, and sometimes there is an increase in
EDAC without it being linked to a CME .

Fig. 2: Overlay of EDAC counter with CME events

To deepen this analysis, we also computed the
correlation coefficients of the two variables. Since we
didn’t know if the correlation was linear or not, we looked
at both Pearson and Spearman correlation indicators:

∗ Pearson Correlation Coefficient:
This measures the linear correlation between two
variables. It ranges from -1 to +1, with -1 indicating
a perfect negative linear correlation, +1 indicating a
perfect positive linear correlation, and 0 indicating
no linear correlation.

∗ Spearman’s Rank Correlation:
This assesses monotonic relationships: it also ranges
from -1 to +1, with -1 indicating a perfect negative
association between ranks (as one variable increases,
the other variable decreases), +1 indicating a perfect
positive association (as one variable increases, the
other variable also increases) and 0 indicating no
association between ranks. If the data is not normally
distributed or the relationship is not linear, it might
be more appropriate.

The results for the correlation between the features
EDAC and CME are summarized in Table I :

Pearson Correlation Coefficient 0.013
Spearman’s Rank Correlation 0.010

TABLE I: EDAC and CME correlation Coefficients

Given these almost-zero correlation values, it’s clear that
EDAC counts alone have very little association with CME
events.

This is why in our models later, we will look at more
complex patterns of EDAC counts: to predict a CME
at a given time, we will look at the time series of the
last X hours of EDAC counts. This should lead to better
prediction.

C. Magnetometer data

CME event directly influence the magnetic field around
them. Hence during a CME, we observe fluctuation in the
magnetic field measured of instruments onboard the VEX
spacecraft, as seen in in Figure 3. For this particular rea-
son, we will utilize magnetometer data to predict CME and
compare it’s performance with the EDAC only prediction
models.

Fig. 3: Magnetometer measurements during a CME event

VEX spacecraft orbits near the planet Venus. Hence
the magnetometer measurements are influenced by the
magnetosphere of the planet, resulting in periodic spikes
in the data, as shown in Figure 4. This observation led us
to add the VEX-sun distance as another feature for our
classification task.

Fig. 4: Relation between Magnetometer measurements
spikes and VEX-SUN distance

IV. BASELINE MODELS

We started by training ”easy” models, to serve as an
indicator for later improvement, and to find the best hyper
parameters with lower cost.



A. The ”dumb” model

Let’s consider a ”dumb” model that would always
predict zero (i.e. no CME event): this model would have
high accuracy, in this case, 98%, but a terrible F1 score:
zero (no true positive). This is why it’s essential to consider
both of these metrics for a comprehensive evaluation of
our models, rather than relying solely on accuracy. Our
objective will be to optimize the F1 score while also
keeping a satisfactory accuracy (ideally not too much
below the dumb model accuracy).

B. Basic Neural Network

This is our basic architecture: it will be a a baseline
to compare its performance with the performance of the
more complex LSTMs later. Basic neural networks are
faster to train than the LSTMs so we will use this model
for the hyperparameter search (since it requires many
training runs). We also experiment with many techniques
to mitigate class imbalance, and will only keep the ones
that work best on the LSTMs.

∗ Architecture details:
We created all the neural net models using the library
TensorFlow [4]. The models took as input a time
series (on the last X hours) of the EDAC counts, it
had two hidden layers, and a final layer with the
prediction. We used ADAM for the optimizer, and
binary cross entropy for the loss since it is better
suited for binary classification

∗ Finding the best window size:
We created various models with different window
sizes X, i.e. they predicted CME events at a given
time by looking at the last X hours of data. The
window size we tried spanned from just one hour to
one month. We looked at the accuracy and F1 score
and found that the best was to look at all data from
the last X=3 hours.

∗ Mitigating class imbalance:
Because of the severe class imbalance, the neural
networks tended to learn the ”dumb” model (always
predicting zero). We tried two approaches to mitigate
this: data augmentation (duplicating instances of the
minority class) and adding class weights (give more
importance to instances of minority class during
training). Data augmentation led to strong overfitting
on the training data and bad performance on the
validation data so for the future models we only kept
class weights.

C. First results

Table II summarizes the results we had for our basic
models. Because of the severe class imbalance, the neural

network tended to learn the ”dumb” model (always pre-
dicting zero) thus resulting in a null F1 score. The model
with class weights had a slightly better F1 score but a
terrible accuracy (it always predicted the minority class).

Model Accuracy F1 score
”Dumb” 98% 0%

Neural Net 98% 0%
Neural net with Class weights 2% 4%

TABLE II: Baseline results of the simpler models

Overall, any technique trying to increase the F1 score
led to a model that always predicted the minority class.
This is why we moved on to a more complex architecture,
better suited to deal with time series data and detect more
complex patterns.

V. LSTM ARCHITECTURE

We chose to use the Long Short-Term Memory (LSTM)
model [5] to detect the CMEs using time series data
from spacecraft magneto and EDAC sensors. This model
is an improved version of the recurrent neural networks
(RNNs) since it can handle sequential data, improves the
long-term dependency learning of the model and mitigates
the vanishing gradient problem inherent from traditional
RNNs.

The LSTM architecture includes memory cells, input
gates, forget gates, and an output gate as seen in Figure
5. The memory cells serve as storage units, allowing the
model to accumulate information over extended sequences.
The input gates regulate the flow of new information into
the memory cells, determining which elements are relevant
for learning. Simultaneously, the forget gates manage the
retention or discarding of existing information, enabling
the model to selectively remember or forget patterns based
on their significance. The output gate then governs the
information that is passed on to subsequent time steps or
the final prediction, contributing to the model’s ability to
forecast time series.

Fig. 5: Architecture of the Long Short-Term Memory
model

Thanks to the memory cells and the different gates,
the LSTM architecture can understand complex temporal
patterns within the magneto and EDAC time series and
improves the detection accuracy of CME events.



VI. FINAL MODEL

For the final models that we trained, we created LSTMs
using the PyTorch library [6].

A. Input features

Each LSTM took as input a timeseries of features of
the last 3 hours (with a granularity of 5 minutes) and
predicted whether it corresponded to a CME event. We
trained different models that took different features as
input to see which ones worked best for our task. The
features we used are:
∗ EDAC counts
∗ Magnetic field vector magnitude (BT)
∗ Magnetic field vector coordinates (BX, BY and BZ)
∗ Distance between VEX spacecraft and the sun (RSC)

B. Model architecture

Each model was composed of two hidden LSTM layers
stacked on top of each other: in a multi-layered LSTM,
the output of one layer of LSTM cells is fed as input to
the next layer. This stacking allows the network to learn
more complex features at different levels of abstraction.
Each LSTM cell in the network has a hidden state of size
50, i.e. the internal memory of each LSTM cell (which is
crucial for capturing and retaining information over time)
can store and process information using 50-dimensional
vectors.
Here are further details about the models :
∗ Activation function: sigmoid
∗ Loss: Binary Cross Entropy
∗ Optimizer: Adam with a learning rate of 0.001
∗ Batch size: 128
∗ Number of epoch: 10

C. Class imbalance mitigation

Lastly, we trained all models with class weights. For
each model, the F1 score was always higher with class
weights compared to the same model trained without class
weights, while keeping a similar accuracy. We provide an
example of this improvement in Table III, for the model
whose input features are the magnetic field coordinates.

Model Accuracy F1 score
Without Class weights 99.60% 88.30%

With Class weights 99.80% 94.15%

TABLE III: Effect of class weights on model performance

D. Models’ performance

From table IV, we can see that the best model is the
one that predicts based on both magnetic field coordinates
and the solar distance.

CMEs seem to be detected with abnormal changes in
the magnetometer data. Adding the VEX-Sun distance
features allows for the model to compensate disturbance
from Venus’ magnetosphere.

Input Features Accuracy F1 score
EDAC 98.00% 0.00%

BT 95.67% 18.00%
BX BY BZ 99.80% 94.15%

BX BY BZ RSC 99.84% 95.50%

TABLE IV: Performance of the LSTM models

VII. CONCLUSION

This project aimed to study the possibility of recogniz-
ing CME events using EDAC counter onboard spacecrafts,
focusing on the Venus Express mission. The motivation to
use EDAC was because the counter are present onboard
most spacecraft and thus CME event could be detected
without the need for specific instruments. Unfortunately,
we determined EDAC counters are not a significant indi-
cator of the presence of a CME event near the spacecraft.
We then changed our focus towards magnetometer data
acquired during the Venus Express Mission. We observed a
strong correlation between these magnetic field disruption
and CME events, allowing us to build machine learning
models to robustly detect these Solar events.

VIII. FUTURE WORK AND LIMITATIONS

Our model only predicts CME events from the Venus
Express spacecraft and we could try to see how our model
would behave on other spacecrafts in order to know if our
model over-fitted on the Venus orbit or it generalizes to
other orbits as well. However, the CME labelization for
the other spacecrafts such as the Mars Express and Rosetta
are incomplete, so training or testing our model on them
would have poor integrity.



IX. ETHICAL CONSIDERATIONS

For our project, the main stakeholder would be ESA
since they own the dataset we used to train our model.
Another one could be the environment since spacecrafts
are usually not environment friendly but the dataset was
collected for other purposes.

This research strictly respects ethical principles, ensur-
ing responsible and transparent use of data throughout the
study (see Figure 6). The primary dataset utilized in this
project is sourced from the ESA website, which provides
open-access information. The use of openly available data
aligns with principles of transparency and accountability in
scientific research. Moreover, while some additional data
from ESA is not currently public, it is slated for future
release and it is important to note that this data does
not involve any confidential or private information. The
focus of our project is the detection of CMEs, inherently
it avoids any violation of individual privacy as it pertains
solely to space weather phenomena. We acknowledge and
respect the data-sharing policies of ESA, ensuring that our
research maintains the confidentiality and privacy of any
non-public information.
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Fig. 6: Assessing Ethical Risks Table
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