Hypothesis Decomposition and Retrieval for Autoformalization of Discrete
Mathematics

Agatha Duzan
EPFL
agatha.duzan@epfl.ch

Abstract

Formalizing natural language mathematics into
formal proof assistant syntax, known as aut-
oformalization, remains a challenge in auto-
mated theorem proving. Although recent large
language models have shown some progress,
achieving correct formalizations has proved dif-
ficult. In this work, we propose two comple-
mentary methods to enhance autoformalization
of discrete mathematics in Lean 4. First, we
add a step of explicitly decomposing each in-
formal statement into its premises and goals,
aiming to clarify the underlying logical struc-
ture. Second, we incorporate retrieval from
extensive formal libraries—using both a proof-
state-based retriever and a semantic search en-
gine—to surface relevant definitions or struc-
tures that reduce hallucinations and type-check
failures.

We evaluate our approaches on a curated
dataset of 234 informal-formal statement pairs,
measuring correctness with type-checking, text
similarity (BLEU), and the bidirectional defi-
nitional equivalence metric (BEq). Although
single-method gains over the direct transla-
tion baseline are modest, we find that these
approaches provide complementary successes:
combining them yields a higher coverage of
correct formal statements. Our results indicate
that carefully integrated decomposition and re-
trieval steps can resolve certain failures, sug-
gesting that multi-strategy pipelines with au-
tomated output selection are a promising path
forward for large-scale autoformalization ef-
forts in mathematics.

1 Introduction

Automated theorem proving has long promised to
transform mathematical practice by providing rig-
orous, machine-verified proofs at scale. Achieving
this vision, however, requires statements and con-
cepts to be expressed in a formal language like
Lean or Isabelle, where proof assistants can guar-
antee the correctness of a proof. That first step of

translating natural language, unconstrained form,
mathematical statements into a formal language
is referred to as autoformalization, and remains a
bottleneck.

Recent advances in LLMs have shown some
progress in autoformalization, yet the process re-
mains far from satisfactory, leaving substantial
room for improvement. Even the most advanced
pipelines fail to produce consistently valid formal
statements (Wu et al., 2022; Poiroux et al., 2024),
and error rates remain quite high. Furthermore,
the scarcity of gold-standard informal-to-formal
datasets poses a significant challenge. Unlike large
general-domain NLP tasks, which benefit from ex-
tensive training data, autoformalization efforts are
often constrained to a few thousand paired state-
ments at most—a notable limitation. In this work,
we explore two complementary strategies to im-
prove autoformalization of discrete mathematics.
First, we incorporate an informal hypothesis de-
composition step, prompting LLMs to explicitly
list premises and goals before synthesizing the fi-
nal Lean statement. Second, we integrate retrieval
from large formal libraries, on the hypothesis that
surfacing the relevant definitions or structures can
guide the model away from hallucinations and type-
check failures. By testing these methods indepen-
dently and in combination, we aim to establish
which approachs can meaningfully improve cor-
rectness over a direct translation baseline.

Our findings indicate that while it is difficult to
substancially increase the overall translation accu-
racy, certain types of decomposition and retrieval
indeed offer complementary benefits—yielding cor-
rect formalizations on instances where a single ap-
proach fails. This suggests a promising direction
of combining multiple, specialized autoformaliza-
tion strategies and then selecting among candidate
outputs via automated checks and heuristics. In
short, although we are still far from a fully reliable
pipeline, the experiments here underscore the value

of structured reasoning steps and targeted library
retrieval for autoformalization.

2 Related Work

2.1 Autoformalization and Automated
Theorem Proving

Recent work has explored various ways to improve
accuracy in autoformalization and automated theo-
rem proving, but no single approach stands out as
being significantly better than the rest, and break-
through results in this area remain elusive.

Wu et al. (2022) propose an iterative strategy,
starting with few-shot translation from informal
to formal statements and refining the model us-
ing the newly generated proofs. Despite relative
gains in accuracy , the approach suffers from high
computational cost and remains limited to more
accessible math problems. Notably, their reported
best accuracy for formalization is only around 30%,
suggesting room for improvement.

Another approach is DeepSeek-Prover, by Xin
etal. (2024). It focuses on synthetic data generation
to improve automated theorem proving (but raises
questions on synthetic data for autoformalization
as well). Although filtering heuristics remove many
incorrect or trivial statements, about 20% of the fi-
nal statements are false, underscoring the difficulty
of generating large-scale and high-quality synthetic
data for formal mathematics.

Jiang et al. (2022) propose another line of re-
search with Draft, Sketch, and Prove. They intro-
duce a multi-step pipeline for formal proofs: (i)
drafting an informal proof, (ii) sketching a high-
level formal proof outline, and (iii) calling on auto-
mated provers (like Sledgehammer in Isabelle) to
fill in the details. Their results suggest that struc-
tured decomposition and partial automation can
improve formalization outcomes.

2.2 Retrieval

A promising step for autoformalization is retrieval
from large formal mathematics libraries.

Yang et al. (2024) introduce LeanDojo, which
uses a retrieval-augmented system (ReProver) to
fetch relevant premises from the Lean Mathlib li-
brary. The retriever is trained with example pairs
of relevant/irrelevant premises in context, enabling
more precise identification of relevant definitions
and theorems. Once retrieved, these items are com-
bined with the current proof state and fed into an
encoder-decoder model to generate the next proof

step. This approach surpasses GPT-4 on theorem-
proving (on the benchmark introduced in the same
paper), highlighting the effectiveness of good re-
trieval mechanisms in formal theorem proving.

Similarly, Anonymous (2024) incorporate a re-
trieval module into their RAutoformalizer frame-
work (Retrieval-Augmented Autoformalizer) to re-
duce the risk of hallucinations, a common issue
in autoformalization where the model invents non-
existent or incorrect definitions. By analyzing de-
pendencies within formal libraries, they present a
topologically ordered dataset of informal-formal
pairs. When a new statement arrives, the system re-
trieves only the relevant objects (definitions, struc-
tures) to guide formalization, which significantly
reduces hallucinations and improves overall cor-
rectness.

Focusing on natural language queries, Gao et al.
(2024) introduce LeanSearch, a semantic search
engine for Mathlib4. Rather than searching by ex-
act theorem names or Lean-specific documentation,
users can input an informal query to retrieve formal
theorems or definitions with semantic similarity.
Although primarily designed for theorem retrieval,
this tool can also locate definitions or structures,
making it valuable for retrieval in autoformaliza-
tion pipelines.

2.3 Benchmarks and Datasets

Multiple benchmarks target the evaluation of aut-
oformalization and theorem proving. MiniF2F
(Zheng et al., 2021) compiles high-school to early-
university math problems (e.g., from the Inter-
national Mathematical Olympiad) and pairs their
informal and formal statements. PutnamBench
(Tsoukalas et al., 2024) also pairs informal/formal
statements, focusing on challenging undergraduate-
level problems from the Putnam Mathematical
Competition. ProofNet (Azerbayev et al., 2023)
offers an even broader range of formal reasoning
tasks—including theorem proving, proof comple-
tion, proof verification, and more—evaluating a
system’s ability to manipulate multiple aspects of
formal logic and mathematics.

2.4 Automated Metrics for Evaluation

Although human evaluation of formal statements
is typically the gold standard, it is slow, expen-
sive, and requires specific expert knowledge, which
makes it unpractical for large-scale assessments.
Developing automated metrics that closely align
with human judgment on the equivalence of for-

mal mathematical statements remains a significant
challenge.

Poiroux et al. (2024) ’s work highlight that type
checking is as a necessary condition for the correct-
ness of a generated formal statement. Combining
type checking with the BLEU score, provides a
proxy metric (TC-BLEU) for the equivalence of
two formal statements.

The BEq metric (Anonymous, 2024) offers an-
other perspective by explicitly checking equiva-
lence between two formal statements. While this
approach is highly precise, yielding no false posi-
tives, it tends to be overly strict, leading to frequent
false negatives. Consequently, BEq can serve as a
conservative lower bound for human evaluation.

3 Method

Our goal is to improve the accuracy of autofor-
malization by introducing intermediate steps in the
translation process. We begin with a baseline of
direct translation, and then explore three more ad-
vanced approaches that build upon this baseline.

Specifically, we investigate how (i) adding a
hypothesis-decomposition step, (ii) incorporating
retrieval from formal libraries, or (iii) combining
both decomposition and retrieval can enhance auto-
formalization.

3.1 Baseline

Our baseline is the direct translation: given the
informal statement of a theorem, we prompt a LLM
to directly produce its formal statement in Lean
4. This direct method uses a carefully designed
prompt and few-shot examples of informal-formal
statement pairs (see example in A.1).

3.2 Informal Hypothesis Decomposition

The key idea behind our first approach is to make
the underlying logical structure of a theorem more
explicit. As illustrated in Figure 1, we start by
taking the informal statement and prompting the
LLM to extract the relevant premises (hypotheses
and assumptions) and goal (what has to be proven).

Then, we form the full prompt containing the
informal statement, hypothesis decomposition, and
few-shot examples. The final output is the formal-
ization of the statement.

In other words, hypothesis decomposition acts as
a structured chain-of-thought, prompting the model
to specify each assumption before attempting a
formalization of the entire statement.

Informal In an abelian group,
Statement every subgroup is normal
LLM
premises:
Informal "G is a group”
Hypothesis "G is commutative"
yp " "H is a subgroup of G"
Decomposition goal:
"H is normal”
Full prompt
+fewshot

LLM

theorem abelian_subgroup_normal
{G : Type _} [CommGroup G] :

V (H : Subgroup G), H.Normal

= sorry

Formal

Statement

Figure 1: Informal Hypothesis Decomposition

3.3 State-based Retrieval

Our second approach augments the baseline with
a retrieval step: it leverages the proof state of an
initial (and potentially imperfect) formalization to
pull in relevant context from the Mathlib library.

Figure 2 depicts this method: we first prompt
the LLM to produce a tentative Lean 4 statement
directly from the informal statement, similar to our
baseline. Then, we convert this preliminary state-
ment into proof-state format, i.e., the abstract con-
text that Lean would display if one tried to prove
the statement interactively. We feed this to the Le-
anDojo retriever, which is trained to encode proof
states and retrieve relevant snippets from Mathlib
(type definitions, structures, etc.). Finally, we form
the full prompt containing the informal statement,
retrieved snippets, and few-shot examples. The
output is the formalization of the statement.

If the retrieval can provide relevant parts of the
Mathlib library, we expect it can help the model
generate an accurate and type-correct formal state-
ment.

3.4 Hypothesis-guided LeanSearch Retrieval

Our last approach combines hypothesis decomposi-
tion with a targeted retrieval strategy, as shown in
Figure 3.

We first prompt the model to extract the hypothe-
ses and convert them into brief natural-language
queries (we use few-shot with specific examples of
decomposition and queries for this step). Then, we
feed each query into LeanSearch (Gao et al., 2024),
a semantic search engine for Mathlib4, which is
capable of returning definitions, structures, or theo-

Informal In an abelian group,
Statement every subgroup is normal
LLM
(- .
theorem abelian_subgroup_normal
Formal {G : Type _} [AbelianGroup G] :
Statement (try) | |V (H : Subgroup G), H.Normal
1= sorry
l A\
(G : Type ?
Proof State _inst_1 : AbelianGroup G
Format H : Subgroup G
= H.Normal
iRetrievaI
Retrieved (*structure CommGroup
Mathlib Typeu — Type u ..
Premises \"structure IsNormalSubgroup ..."
\ 4
Full prompt
+fewshot
lLLM
theorem abelian_subgroup_normal
Formal {G : Type _} [CommGroup G] :
Statement Y (H : Subgroup G), H.Normal
= sorry

Figure 2: State—based Retrieval with LeanDojo. The
retrieval can be performed even when the first formal
statement contains errors.

rems given a query in natural language (we discard
theorems and lemmas from the retrieval since they
are less useful for autoformalization). Finally, we
form the full prompt containing the informal state-
ment, retrieved snippets, and few-shot examples.
The output is the formalization of the statement.
By focusing retrieval on each individual hypoth-
esis, we aim to retrieve more targeted and relevant
definitions for the statement at hand. However, to
assess whether this fine-grained approach truly out-
performs a single-query baseline, we also test an
alternative configuration where the entire informal
statement is passed to LeanSearch. This compari-
son should elicit whether retrieval with hypothesis
decomposition offers a significant advantage over
simply retrieving using the entire statement.

3.5 Evaluation

To assess the correctness and quality of our aut-
oformalization methods, we need to evaluate the
generated formal statements against the golden for-
mal statements.

For a broad comparison, we use the BLEU text
similarity metric: it measures n-gram overlap and
is commonly used to evaluate machine translation
tasks. While it offers a rough estimation of lexical
and semantic similarity, it is insufficient for cap-

Informal In an abelian group,
Statement every subgroup is normal
LLM
s
. "G is a group" : "definition of
Hypothesis a group”
Decomposition | |, ...,
+ NL Queries "H is normal" : "definition of a
normal subgroup”
" group
LeanSearch
Retrieved "structure CommGroup
Mathlib Typeu - Typeu ...
v Premises "structure IsNormalSubgroup ..."
Full prompt
+fewshot
iLLM
theorem abelian_subgroup_normal
Formal {G : Type _} [CommGroup G] :
Statement V (H : Subgroup G), H.Normal
= sorry

Figure 3: Hypothesis Decomposition and Retrieval

turing the precise logical equivalence required by
formal mathematics.

That’s why we also use two formal verifica-
tion metrics that leverage Lean: type-checking and
BEq.

3.5.1 Type checking

Our first line of correctness verification is type-
checking. Concretely, we attempt to compile the
generated formal statement on a Lean server.

We prepend necessary imports ("header’ at-
tribute, or by default import Mathlib’) and strip
out extraneous comments or proof bodies, leaving
only the statement. If Lean’s REPL (Read-Eval-
Print Loop) raises an error, we mark the type check
as failed. Otherwise, if Lean parses and accepts the
statement as well-typed, we record a success.

A statement that fails to type-check cannot be
correct in the formal sense, making this a strict bi-
nary metric. It’s important to note that passing type
checking is only a necessary (but not sufficient)
condition for correctness.

3.5.2 Bidirectional Extended Definitional
Equivalence

To more precisely capture logical equivalence be-
tween two formal statements (golden vs generated),
we use Bidirectional Extended Definitional Equiva-
lence (BEq). This metric, inspired by prior work on
autoformalization, checks whether each statement
can be used to prove the other.

Specifically: we interpret both formal statements
in Lean (with appropriate environment and header).
For each direction, we attempt to show one state-
ment is derivable from the other using Lean tactics.
If both directions succeed, we conclude the state-
ments are equivalent in a definitional sense; if either
direction fails, we cannot confirm equivalence.

Because BEq tests each direction, it is more ro-
bust than purely textual metrics—if a statement is
textually close but mathematically stronger than
the other one, the equivalences fail. Although BEq
is very conservative (and can over-reject valid vari-
ants), it offers a valuable lower bound on equiva-
lence.

4 Experimental Setup

4.1 Datasets

For this project, we focus primarily on discrete
mathematics, where the step to formalizing state-
ments in Lean is often more straightforward. This
choice reflects both personal familiarity with the
field and the practical necessity of restricting the
scope of a semester-long project.

We also created a smaller abstract algebra dataset
for exploratory purposes (see Appendix A.3), cu-
rated similarly to the number theory dataset.

4.1.1 Number Theory Dataset

To build our number theory dataset, we aggregated
formal/informal pairs from two main sources:

e MiniF2F (Zheng et al., 2021): We extracted
all theorems whose name contains ‘num-
bertheory’, yielding 136 entries. Of these,
120 came from the MATH dataset (Hendrycks
et al., 2021) and 16 were custom theorems.

¢ PutnamBench (Tsoukalas et al., 2024): We
retained theorems tagged as ‘number_theory’,
’combinatorics’, ’set_theory’, or “probability’,
producing 110 entries.

We then performed a minimal preprocessing on
these statements: we split out imports and open
declarations (these headers are necessary for type
checking but extraneous for other text-based evalu-
ations), and clean up the statements by removing
IATEX -style formatting.

The end result is a dataset of 234 formal/informal
pairs, available on Hugging Face.

4.1.2 Mathlib Corpus for Retrieval

To support the state-based retrieval approach , we
built a corpus by scraping all dependencies in Math-
lib version 4.14.0. This process gave us roughly
200k items, which we filtered to exclude theorems
and lemmas (less relevant for statement translation),
leaving 59k items. We then encoded each item us-
ing the trained model from the LeanDojo repository,
giving us a corpus of Mathlib snippets and their
corresponding encodings that we can leverage for
retrieval.

4.2 Implementation Details

We use GPT-40 (exact model: gpt-40-2024-11-20)
as our primary generator, given its strong perfor-
mance on mathematical and reasoning tasks. All
experiments set the model’s temperature to O for de-
terministic decoding and a maximum output length
of 1000 tokens.

To guide the system, we use 8 fewshot examples
that are intentionally not from discrete mathemat-
ics, ensuring the model has a general sense of how
to formalize a statement in Lean without relying
on any “built-in” solutions for the same domain.

For the state-based retrieval, we rely on the
model provided by LeanDojo (kaiyuy/leandojo-
lean4-retriever-byt5-small). Given prior findings in
the literature, we test two settings for the number
of retrieved premises (k=3 and k=5).

For the LeanSearch-based retrieval, we also test
with k=3 and k=5 retrieved premises for the base-
line that uses the entire informal statement as the
search query. In the hypothesis-decomposition
variant, each hypothesis is turned into its own
LeanSearch query, from which we retrieve k=1
premise per hypothesis.

5 Results

Table 1 summarizes our main results, focusing on
type-check rate, TC-BLEU, and BEq metrics. We
compare the baseline methods against our proposed
approaches, and look at the impact of adding dif-
ferent intermediate steps.

Our first observation is that overall performance
metrics fall within a relatively narrow range (21%+
2% on BEq), suggesting that GPT-40 may not al-
ways fully capitalize on additional cues such as
decomposed premises or retrieved library snippets.
Nevertheless, we see some interesting trends.

The results show that adding the informal hy-
pothesis decomposition step degrades the overall

https://huggingface.co/datasets/agatha-duzan/number_theory_af
https://huggingface.co/kaiyuy/leandojo-lean4-retriever-byt5-small
https://huggingface.co/kaiyuy/leandojo-lean4-retriever-byt5-small

Method BEq (%) | Type-Check (%) | TC-BLEU
Base 20.51 47.01 0.195
Base - no fewshot 19.66 43.16 0.177
Informal hypothesis decomposition 19.23 38.03 0.165
State-based retrieval (top-k = 3) 20.09 52.99 0.201
State-based retrieval (top-k = 5) 21.79 53.42 0.200
LeanSearch retrieval baseline (top-k = 3) 20.51 52.14 0.204
LeanSearch retrieval baseline (top-k = 5) 20.94 54.27 0.202
Hypothesis-guided LeanSearch retrieval 22,22 52.56 0.204

Table 1: Main results table

performance: this suggests that in most cases, this
step introduces more noise than useful informa-
tion for the model. On the other hand, none of the
retrieval methods worsens performance compared
to the baseline: even small improvements suggest
that the retrieved examples are relevant (otherwise
it would be unrelevant 'noise’ again and worsen
performance).

Our method of hypothesis-guided LeanSearch
retrieval yields the highest BEq (22.22%) , while
the highest type check rate (54.27%) is attained
with the LeanSearch retrieval baseline (top-k = 5).

5.1 Complementarity of Methods

We saw that our metrics don’t vary much across
different methods, but we also want to examine the
overlap of successes: do methods with similar BEq
succeed on the same informal statements?

Given a binary metric, we define a complemen-
tarity score S = %, where U7 and U, are
the unique successes of Methods 1 and 2, respec-
tively, and B is the number of successes shared by
both. A higher S (closer to 1) indicates that the
methods succeed in more disjoint sets of statements
and are therefore more complimentary (using them
together would boost coverage).

As shown in Figure 4, different variants of the
same approach have low complimentarity. Notably,
the hypothesis-guided LeanSearch retrieval is very
redundant with the LeanSearch baselines.

More interestingly, we see that informal hypothe-
sis decomposition has a high complimentarity with
all other methods: even though it individually per-
forms worse, it occasionally formalizes statements
that the other methods fail, making it an interesting
candidate to be used jointly with other methods.

5.2 Combining Multiple Methods

These findings motivate us to experiment with com-
bining methods. Specifically, for each informal

statement, we generate multiple formal statements
(one from each method) and select the one yielding
the highest BEq score (or highest type-check if all
fail BEq).

The results are shown in Table 2: we see
that combining complimentary methods (baseline,
LeanSearch top5S retrieval, state-based top5 re-
trieval and informal hypothesis decomposition) pro-
duces the best results overall: 28.21% BEq and
61.97% type-checking.

This shows that weaker-performing approaches
like informal hypothesis decomposition can carry
unique strengths for certain statements, making
them valuable in a combined pipeline.

6 Discussion

One of the clearest insights from this project is
that it remains challenging for LLMs—even high
performance models like GPT-4—to reliably lever-
age additional information to significantly improve
formalization outcomes. While our retrieval-based
methods led to modest gains, these improvements
were smaller than anticipated. This suggests that
naive injection of contextual snippets or a decom-
position of hypotheses does not consistently help
unless the model can fully integrate the supplied
information into the reasoning process.

The informal hypothesis decomposition ap-
proach showed lower raw performance, yet it ex-
hibited strong complementarity: it succeeded in
formalizing certain statements that the other meth-
ods failed. This implies that structural prompts
(like explicit hypothesis decomposition) may be
relevant in specific scenarios or statement types.
Although such an approach can introduce noise or
redundancy in general, it can still add value when
combined with other methods, when the final for-
mal statement is chosen among multiple candidate
formalizations.

Complimentarity scores for metric beq

base_no_fewshot

0.000

base - 0.000 0.397

informal_hyp_decomp - 0.000 0.407 - 0-30
-0.25
. hyp_decomp_leansearch 0.000
s @
= o
i3 -020%
= baseline_leansearch_top5 0.407 0.000
-0.15
baseline_leansearch_top3 - 0.397 0.000
0.10
leandojo_top5 0.263 0.426 0.000
0.05
leandojo_top3 0.208 0.000
| 0.00
5 <] 9)
& & N e
¥ o & & el g
(‘0 & ,‘\Q s \e? (g;b (s;b ‘b“‘b (‘b
@&' > & & M M
15
.(\K"&\ ¥ & &
& £
Y ‘@‘& &B?’
Method 2
Figure 4: Complimentarity of our methods, according to uniqueness of BEq successes
N Best combination BEq (%) | Type-Check (%)
2 Base + LeanSearch top5 23.08 56.84
3 Base + LeanSearch top5 + Informal hypothesis decomposition 26.50 59.40
4 | Base + LeanSearch top5 + State-based top5 + Informal hypothesis decomposition 28.21 61.97

Table 2: Best combinations of N methods

Our results also underscore the importance of
using multiple evaluation metrics. Type checking
alone cannot guarantee logical equivalence, while
the stricter BEq metric leads to an over-rejection
of statements, particularly for more complex or
lengthy ones. The observed discrepancy highlights
the continuing need for better automated metrics
that balance precision with tolerance for semanti-
cally valid variations in formal language.

Overall, the project reveals that (1) retrieval can
be integrated without harm, but its best applica-
tion likely requires models trained to make full
use of retrieved snippets, and (2) complementary
strategies—like combining decomposition and re-
trieval—can capture a broader set of successes than

any single method.

7 Future Work

Several directions stand out as promising ways to
build on this work. First, scaling up both the model
and sampling could improve the rate of correct
formalization. For instance, using OpenAl’s ol
model (better mathematical reasoning capabilities)
and then sampling multiple candidate formaliza-
tions for each statement could increase coverage.
Subsequent filtering—through type checking, BEq,
or other heuristics—would keep only the valid or
likely-correct formalizations.

Second, although our study tested how hypothe-
sis decomposition and retrieval can help, it did not

explore systematic ways of fine-tuning the model
to specifically incorporate this additional informa-
tion. Developing training strategies that enable
effective use of retrieved snippets or decomposed
hypotheses may enable models to extract greater
value from intermediate steps.

A third avenue for future work is to improve
automated metrics for autoformalization. Our find-
ings underscore that metrics like type checking and
BEq, although useful, have limitations in cover-
age, precision, or leniency. Designing more so-
phisticated equivalence checkers—or augmenting
existing ones with approximate semantic match-
ing—would facilitate quicker and more accurate
evaluation, especially for large-scale experiments.

Finally, building larger and higher-quality
datasets remains crucial. The scarcity of exten-
sive, reliable informal-to-formal pairs limits both
supervised learning and evaluation. A promising
direction is to generate synthetic data that is math-
ematically sound and includes diverse examples
covering various domains and difficulty levels. Cu-
rating or improving such synthetic resources could
significantly advance the community’s ability to
develop and test new autoformalization methods.

References

Anonymous. 2024. Rethinking and improving auto-
formalization: towards a faithful metric and a de-
pendency retrieval-based approach. In Submitted to
The Thirteenth International Conference on Learning
Representations. Under review.

Zhangir Azerbayev, Bartosz Piotrowski, Hailey
Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. 2023. Proofnet: Autoformalizing

Auguste Poiroux, Gail Weiss, Viktor Kuncak, and An-
toine Bosselut. 2024. Improving autoformalization
using type checking. Preprint, arXiv:2406.07222.

George Tsoukalas, Jasper Lee, John Jennings, Jimmy
Xin, Michelle Ding, Michael Jennings, Amitayush
Thakur, and Swarat Chaudhuri. 2024. Putnam-
bench: Evaluating neural theorem-provers on
the putnam mathematical competition. Preprint,
arXiv:2407.11214.

Yuhuai Wu, Albert Q. Jiang, Wenda Li, Markus N.
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models. Preprint, arXiv:2205.12615.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. 2024. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data. arXiv preprint arXiv:2405.14333.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. 2024. Le-
andojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information
Processing Systems, 36.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. Minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. arXiv preprint
arXiv:2109.00110.

A Appendix
A.1 Prompt Example

We experimented with various prompting tech-
niques to optimize the model performance. The
prompt below proved to be the most effective, it
is the one we use in the baseline. Other methods
use very similar prompting, adding the hypothesis
decomposition or retrieved snippets.

and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433.

"You are an expert in formalizing mathematical
statements in Lean 4. Given the following informal
mathematical statement, write the corresponding formal
statement in Lean 4 syntax.

Output format: The translated LEAN 4 theorem should be
provided as a single cohesive code block, displaying
the correct syntax and formatting expected for a LEAN

4 theorem statement. Do not enclose the code block in
backticks. Write sorry as the proof.

Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin,
and Bin Dong. 2024. A semantic search engine for
mathlib4. Preprint, arXiv:2403.13310.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Preprint,
arXiv:2103.03874.

Some examples:

Informal statement:
<FEWSHOT_1_INFORMAL>

Formal statement in Lean 4:
<FEWSHOT_1_FORMAL>

Albert Q Jiang, Sean Welleck, Jin Peng Zhou,
Wenda Li, Jiacheng Liu, Mateja Jamnik, Timo-
thée Lacroix, Yuhuai Wu, and Guillaume Lample.
2022. Draft, sketch, and prove: Guiding formal the-
orem provers with informal proofs. arXiv preprint
arXiv:2210.12283.

https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=hUb2At2DsQ
https://openreview.net/forum?id=hUb2At2DsQ
https://arxiv.org/abs/2403.13310
https://arxiv.org/abs/2403.13310
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2406.07222
https://arxiv.org/abs/2406.07222
https://arxiv.org/abs/2407.11214
https://arxiv.org/abs/2407.11214
https://arxiv.org/abs/2407.11214
https://arxiv.org/abs/2205.12615
https://arxiv.org/abs/2205.12615

Now it's your turn:

Informal statement:
<INFORMAL>

Formal statement in Lean 4:"

A.2 Complimentarity Analysis on Type
Checking

We also examined the complementarity of methods
using the type check metric.

As seen in Figure 5, the trends observed largely
align with those identified for BEq, reinforcing the
idea that complementarity scores capture meaning-
ful patterns in method overlap. For this reason, we
opted to present only the BEq results in the main
body of the report to avoid redundancy.

A.3 Abstract Algebra Experiment

To further test our approaches, we created a smaller
dataset focusing on abstract algebra statements.
This dataset was intentionally curated to include
more complex problems, involving intricate types
and definitions, with the goal of evaluating the per-
formance of our methods on harder problems.

Unfortunately, our experiments yielded an aver-
age BEq score of 0 across all methods, making it
difficult to assess the relative impact of different
approaches. We attribute this result to the increased
complexity of the statements, which often involve
longer formal expressions and more sophisticated
type dependencies. These factors exacerbate the
strictness of the BEq metric and its tendency to
over-reject.

The poor performance highlights a key limitation
of BEq as an evaluation metric for statements of
greater length or complexity.

Method 1

Complimentarity scores for metric repl

base_no_fewshot

base

informal_hyp_decomp -

-0.25
hyp_decomp_leansearch (0.056
@
-0.20 5
@
baseline_leansearch_top5
-0.15

baseline_leansearch_top3 (0.056

leandojo_top5

leandojo_top3

& Q o 5] ?]]
@f}\ ‘O'oez (9@ &'b‘*b R R hd &
@ ¥ < & & 57 e
o7 s ¥ '5‘ '5‘ © ©
& Ky & & & @‘b ,bcb
o > i & & @ @
& &\‘b P & &
L - s
& o & N
& @ &
Method 2

Figure 5: Complimentarity of our methods, according to uniqueness of type checking successes

10

	Introduction
	Related Work
	Autoformalization and Automated Theorem Proving
	Retrieval
	Benchmarks and Datasets
	Automated Metrics for Evaluation

	Method
	Baseline
	Informal Hypothesis Decomposition
	State–based Retrieval
	Hypothesis-guided LeanSearch Retrieval
	Evaluation
	Type checking
	Bidirectional Extended Definitional Equivalence

	Experimental Setup
	Datasets
	Number Theory Dataset
	Mathlib Corpus for Retrieval

	Implementation Details

	Results
	Complementarity of Methods
	Combining Multiple Methods

	Discussion
	Future Work
	Appendix
	Prompt Example
	Complimentarity Analysis on Type Checking
	Abstract Algebra Experiment

